Spinal muscular atrophy
Spinal muscular atrophy (SMA) is an incurable autosomal recessive disease caused by a genetic defect in the SMN1 gene which codes SMN, a protein necessary for survival of motor neurons, and resulting in death of neuronal cells in the anterior horn of spinal cord and subsequent system-wide muscle wasting (atrophy).
Spinal muscular atrophy manifests in various degrees of severity which all have in common general muscle wasting and mobility impairment. Other body systems may be affected as well, particularly in early-onset forms. Spinal muscular atrophy is the most common genetic cause of infant death.
Sometimes, the term spinal muscular atrophy is used to encompass other hereditary disorders that involve death of motor neurons in the anterior horn of spinal cord - see spinal muscular atrophies.
Types
SMA manifests over a wide range of severity affecting infants through adults. The disease spectrum is variously divided into 3–5 types, in accordance either with the age of onset of symptoms or with the highest attained milestone of motor development.
The most commonly used classification is as follows:
Type |
Eponym |
Usual age of onset |
Characteristics |
OMIM |
I: Infantile |
Werdnig–Hoffmann disease |
0–6 months |
The severe form manifests in the first months of life, usually with a quick and unexpected onset ("floppy baby syndrome"). Rapid motor neuron death causes inefficiency of the major bodily organs - especially of the respiratory system - and pneumonia-induced respiratory failure is the most frequent cause of death. Babies diagnosed with SMA type I do not generally live past two years of age, with death occurring as early as within weeks in the most severe cases (sometimes termed SMA type 0). With proper respiratory support, milder SMA type I phenotypes are known to live well into adulthood. |
253300 |
II: Intermediate |
Dubowitz disease |
6–18 months |
The intermediate form affects children who are never able to stand and walk but who are able to maintain a sitting position at least some time in their life. The onset of weakness is usually noticed some time between 6 and 18 months. The progress is known to vary greatly, some patients gradually grow weaker over time while others through careful maintenance avoid any progression. Body muscles are weakened, and the respiratory system is a major concern. Life expectancy is somewhat reduced but most SMA II patients live well into adulthood. |
253550 |
III: Juvenile |
Kugelberg–Welander disease |
>18 months |
The juvenile form usually manifests after 18 months of age and describes patients who are able to walk without support at some time, although many later lose this ability. Life expectancy is normal or near normal. |
253400 |
IV: Adult-onset |
|
>35 years |
The adult-onset form - sometimes regarded as a late-onset SMA type III - usually manifests after 35 years of age with gradual weakening of muscles. The disease progress mainly affects proximal muscles of the extremities, frequently rendering the patient wheelchair-bound. Other complications are rare, and life expectancy is normal. |
271150 |
The most severe form of SMA type I is sometimes termed SMA type 0 (or severe infantile SMA) and is diagnosed in babies that are born so weak that are able to survive only a few weeks even with intensive respiratory support. SMA type 0 should not be confused with SMARD1 which has very similar symptoms and course but has a different genetic cause than SMA.
Development milestone attainment is commonly measured using a specially modified Hammersmith Functional Motor Scale.[1][2][3][4]
The term Werdnig-Hoffman disease is used after Johann Hoffmann and Guido Werdnig and the term Kugelberg-Welander disease after Erik Klas Hendrik Kugelberg and Lisa Welander, the medical professionals who first described the condition. Rarely used Dubowitz disease (not to be confused with Dubowitz syndrome) is named after Victor Dubowitz, an English neurologist who authored several studies on SMA.
Causes
Spinal muscular atrophy is linked to a genetic mutation in the SMN1 gene.[5]
Human chromosome 5 contains two nearly identical genes at location 5q13: a telomeric copy SMN1 and a centromeric copy SMN2. In healthy individuals, the SMN1 gene codes the survival of motor neuron protein (SMN) which, as its name says, plays a crucial role in survival of motor neurons. The SMN2 gene, on the other hand - due to a variation in a single nucleotide (840.C→T) - undergoes alternative splicing at the junction of intron 6 to exon 7, with only 10-20% of SMN2 transcripts coding a fully functional survival of motor neuron protein (SMN-fl) and 80-90% of transcripts resulting in a truncated protein compound (SMNΔ7) which is rapidly degraded in the cell.
In SMA-affected individuals, the SMN1 gene is mutated in such a way that it is unable to correctly code the SMN protein - due to either a deletion occurring at exon 7 or to other point mutations (frequently resulting in the functional conversion of the SMN1 sequence into SMN2). All patients, however, retain at least one copy of the SMN2 gene (with most having 2-4 of them) which still code small amounts of SMN protein - around 10-20% of the normal level - allowing neurons to survive. In the long run, however, reduced availability of the SMN protein results in gradual death of motor neuron cells in the anterior horn of spinal cord and the brain. Consequently, motor muscles undergo progressive atrophy.
Muscles of lower extremities are usually affected first, followed by muscles of upper extremities, spine and neck and, in more severe cases, pulmonary and mastication muscles. Proximal muscles are always affected earlier and in a greater degree than distal.
The severity of SMA symptoms is broadly related to how well the remaining SMN2 genes can make up for the loss of SMN1. This is partly related to the number of SMN2 gene copies present on the chromosome. Whilst healthy individuals carry two SMN2 gene copies, SMA patients can have anything between 1 and 4 (or more) of them, with the greater the number of SMN2 copies the milder the disease severity. Thus, most SMA type I babies have one or two SMN2 copies; SMA II and III patients usually have at least three SMN2 copies; and SMA IV patients normally have at least four of them. However, the correlation between symptom severity and SMN2 copy number is not absolute and there seem to exist other factors impacting on the disease phenotype.[6]
Spinal muscular atrophy is inherited in an autosomal recessive pattern, which means that the defective gene is located on an autosome, and two copies of the defective gene - one from each parent - are required to inherit the disorder: the parents do not need to be themselves affected. SMA seems to appear de novo (i.e., without any hereditary causes) in around 2-4% of cases.
Spinal muscular atrophy affects individuals of all races, unlike other well known autosomal recessive disorders like sickle cell disease and cystic fibrosis which have significant differences in occurrence rate between races. The overall incidence of SMA, of all types and across all ethnic groups, is in the range of 1 per 10,000 individuals; the gene frequency is thus around 1:100, therefore, approximately one in 50 persons are carriers.[7][8] There are no known health consequences of being a carrier, and presently the only way one may know to consider the possibility is if a relative is affected.
Symptoms
The symptoms vary greatly depending on the SMA type involved, the stage of the disease and individual factors and may include:
- Areflexia, particularly in extremities
- Marked hypotonia in legs, arms, rib, chest, and bulbar muscles, limpness or a tendency to flop
- Difficulty achieving developmental milestones, difficulty sitting/standing/walking
- Adopting of a frog-leg position when sitting (hips abducted and knees flexed)
- Respiratory distress, weak cough/cry
- Bell-shaped torso (caused by using only abdominal muscles for respiration)
- Difficulty sucking or swallowing, poor feeding
- Fasciculations (twiching) of the tongue
- Arthrogryposis (multiple congenital contractures)
Diagnosis
Very severe SMA (type 0/I) can be sometimes evident before birth - reduction in foetal movement in the final months of pregnancy; else, it manifests within the first few weeks or months of life when abnormally low muscle tone is observed (the "floppy baby syndrome").
Further, for all SMA types,
Population screening for SMA has been found not cost-effective.[10] However, pregnant women can have an amniocentesis done for the purpose of genetic testing of the foetus towards SMA.
Treatment
There is no known cure for spinal muscular atrophy.
Palliative care
Care is symptomatic. Main areas of concern are as follows:
- Orthopaedics — Weak spine muscles may lead to development of kyphosis, scoliosis and other orthopaedic problems. Spine fusion is sometimes performed in SMA I/II patients once they reach the age of 8-10 to relieve the pressure of a deformed spine on the lungs. SMA patients might also benefit greatly from various forms of physiotherapy and occupational therapy .
- Respiratory care — Respiratory system requires utmost attention in SMA as once weakened it never fully recovers. Weakened pulmonary muscles in SMA type I/II patients can make breathing more difficult and pose a risk of hypoxiation, especially in sleep when muscles are more relaxed. Impaired cough reflex poses a constant risk of respiratory infection and pneumonia. Non-invasive ventilation (BiPAP) is frequently used and tracheostomy may be sometimes performed in more severe cases;[11] both methods of ventilation prolong survival in a comparable degree, although tracheostomy prevents speech development.[12]
- Nutritional care — Difficulties in jaw opening, munching and swallowing food might pose SMA patients at risk of malnutrition. A feeding tube can be necessary in SMA type I and more severe type II patients. [13][14][15][16]
- Mobility — Assistive technologies may help in managing movement and daily activity and greatly increase the quality of life.
- Cardiology — Although heart is not a matter of routine concern, a link between SMA and certain heart conditions has been suggested.[17][18][19][20]
- Mental health — SMA children do not differ from the general population in their behaviour; their cognitive development can be slightly faster, and certain aspects of their intelligence are above the average.[21][22][23] Despite their disability, SMA-affected people report surprisingly high degree of satisfaction from life.[24]
Palliative care in SMA has been standardised in the Consensus Statement for Standard of Care in Spinal Muscular Atrophy which has been recommended for standard adoption worldwide.
Emerging therapies
Since the underlying genetic mechanism of SMA was described in 1990, several therapeutic approaches have been proposed and investigated. Since a vast number of in vitro and animal modelling studies suggest that restoration of SMN levels reverts SMA symptoms, the majority of emerging therapies focus on increasing the availability of SMN protein to motor neurons.
The main therapeutic pathways under research as of December 2011 include:[25][26][27][28][29][30][31][32][33]
- Gene therapy — aims at correcting the SMN1 gene by replacing incorrect nucleotides with a correct sequence, usually using a viral vector for RNA delivery.[34] In the context of SMA, it is currently being researched using the scAAV9 viral vector at the Ohio State University and Nationwide Children's Hospital, USA, and the University of Sheffield, United Kingdom, as well as by Genzyme Corporation, USA, and Généthon, France. In one study this method has resulted in the greatest survival increase achieved to-date in a SMNΔ7 mouse model (median survival of 400 days in treated mice as opposed to 15 days in untreated mice). Safety and pharmacokinetics of scAAV9 viral vector has been tested in non-human primates.[35]
- Stem cell therapy — aims at offering protection to affected neurons through injection of specially prepared human stem cells in the spinal cord which subsequently develop into neuronal cells able to code full-length SMN protein, and is developed commercially in the context of SMA by California Stem Cell, USA. Experimental stem cell therapy is also offered to SMA patients - based on limited research and with unclear outcome - in private clinics in Brazil, China, Russia and Ukraine.
- SMN2 activation — aims at increasing expression of the SMN2 gene and thus increasing the amount of full-length SMN available; compounds under investigation include:
-
-
-
- Butyrates: sodium butyrate and sodium phenylbutyrate — promising in vitro and demonstrated effective in mouse models,[37][38][39] proved ineffective in symptomatic SMA patients (probably due to extremely short half-life),[40] still being trialled in pre-symptomatic type I/II infants[41]
- Valproic acid — formerly used widely on experimental basis due to earlier research showing its effectiveness in vitro[42] and in mouse models,[43] in achievable concentrations demonstrated ineffective in SMA patients[44][45][46] and even shown to aggravate SMA symptoms[47]
-
- M344 — shown very effective in mouse models,[48] so far not trialled in SMA patients
-
- CBHA, SBHA — shown very promising in vitro
- Entinostat (MS-275) — shown very promising in vitro
- Panobinostat (LBH-589) — shown very effective in mouse models,[49] not trialled in SMA patients due to toxicity at required dosage
- Trichostatin A — shown effective in mouse models,[50][51] so far not trialled in SMA patients
- Vorinostat (SAHA) — shown effective in mouse models,[52] so far not trialled in SMA patients
- Hydroxycarbamide (hydroxyurea) — shown effective in mouse models[53] and subsequently commercially researched by Novo Nordisk, Denmark, but demonstrated no effect on SMA patients in subsequent clinical trials[54]
- Natural polyphenol compounds: resveratrol, curcumin — moderate effectiveness on muscle strength supported by anecdotal evidence from patients and limited research in vitro[55][56]
- Prolactin — recently shown effective in mouse models,[57] so far not trialled in SMA patients
- Salbutamol (albuterol) — demonstrated moderately effective in vitro[58] and in two clinical trials involving SMA II/III patients[59][60]
- SMN2 alternative splicing modulation — targets the alternative splicing of the SMN2 gene so as to achieve a higher proportion of full-length SMN transcripts (forced gene conversion SMN2→SMN1); compounds under investigation include:
-
-
- PTK-SMA1 — a proprietary small molecule splicing modulator under development by Paratek Pharmaceutical, USA
- ISIS-SMNx — a proprietary molecule under development by Isis Pharmaceuticals, USA, and as of December 2011 under a phase I clinical trial; has Fast Track Designation (USA) and Orphan Medicinal Product Recommendation (EU)
-
- RG3039 (formerly, Quinazoline495) — a proprietary quinazoline derivative under development by Repligen Corporation, USA, and as of December 2011 scheduled for phase II clinical trial; has Fast Track Designation (USA) and Orphan Medicinal Product Recommendation (EU)
- SMN stabilisation — aims at stabilising the SMNΔ7 protein (the short-lived defective protein coded by the SMN2 gene) so that it is able to sustain neuronal cells;[67] investigated compounds include:
-
-
- TC-007 — a proprietary aminoglycoside antibiotic under commercial development by Tikvah Therapeutics, USA
- Neuroprotection — aims at prolonging survival of motor neurons even with low levels of SMN; investigated compounds include:
-
- An unclear mechanism of action is found in the following compounds currently under research:
-
- PRO105 — a proprietary compound under development by Prosensa BV, The Netherlands
- PTC-X — three proprietary compounds under joint development by PTC Therapeutics, USA, and Hoffmann-La Roche, Switzerland[77]
In vivo research is usually conducted using genetically engineered drosophila,[78] zebrafish[79] and mouse[80] models; larger animal models are under development.[81] SMA patients can have a chance of participating in the research by enering their details into international SMA patient registries. A list of clinical trials targeting SMA can be consulted here [1].
It has to be noted, though, that SMA therapeutics seem to be most effective when given immediately after birth, then losing their efficacy with the patient's age. This might be related to the variation in time of the needs for SMN protein by neuronal cells. However, this also poses a major therapeutic problem as hardly ever is SMA diagnosed at birth.[82][83]
Prognosis
Generally, patients tend to deteriorate over time, but prognosis varies with the SMA type and disease progress which shows a great degree of individual variability.
The majority of children diagnosed with SMA type 0/I do not reach the age of 10, recurrent respiratory problems being the primary cause of morbidity.[84] With proper care, milder SMA type I cases have lived into adulthood.[85]
In SMA type II, the course of the disease is stable or slowly progressing and life expectancy is somewhat reduced compared to the healthy population, although patients usually live to become parents and grandparents.
SMA type III has normal or nearly normal life expectancy if standards of care are followed. Adult-onset SMA usually means only mobility impairment and does not affect life expectancy.
External links
Standards:
Patient registries:
SMA organisations:
SMA patient community support (thank you not to remove these links) :
See also
References
- ^ Main, M.; Kairon, H.; Mercuri, E.; Muntoni, F. (2003). "The Hammersmith Functional Motor Scale for Children with Spinal Muscular Atrophy: A Scale to Test Ability and Monitor Progress in Children with Limited Ambulation". European Journal of Paediatric Neurology 7 (4): 155–159. doi:10.1016/S1090-3798(03)00060-6. PMID 12865054. edit
- ^ Krosschell, K. J.; Maczulski, J. A.; Crawford, T. O.; Scott, C.; Swoboda, K. J. (2006). "A modified Hammersmith functional motor scale for use in multi-center research on spinal muscular atrophy". Neuromuscular Disorders 16 (7): 417–426. doi:10.1016/j.nmd.2006.03.015. PMID 16750368. edit
- ^ o’Hagen, J. M.; Glanzman, A. M.; McDermott, M. P.; Ryan, P. A.; Flickinger, J.; Quigley, J.; Riley, S.; Sanborn, E. et al. (2007). "An expanded version of the Hammersmith Functional Motor Scale for SMA II and III patients". Neuromuscular Disorders 17 (9–10): 693–697. doi:10.1016/j.nmd.2007.05.009. PMID 17658255. edit
- ^ Glanzman, A. M.; O'Hagen, J. M.; McDermott, M. P.; Martens, W. B.; Flickinger, J.; Riley, S.; Quigley, J.; Montes, J. et al. (2011). "Validation of the Expanded Hammersmith Functional Motor Scale in Spinal Muscular Atrophy Type II and III". Journal of Child Neurology 26 (12): 1499–1507. doi:10.1177/0883073811420294. PMID 21940700. edit
- ^ Brzustowicz, L. M.; Lehner, T.; Castilla, L. H.; Penchaszadeh, G. K.; Wilhelmsen, K. C.; Daniels, R.; Davies, K. E.; Leppert, M. et al. (1990). "Genetic mapping of chronic childhood-onset spinal muscular atrophy to chromosome 5q1 1.2–13.3". Nature 344 (6266): 540–541. doi:10.1038/344540a0. PMID 2320125. edit
- ^ Jędrzejowska, M.; Milewski, M.; Zimowski, J.; Borkowska, J.; Kostera-Pruszczyk, A.; Sielska, D.; Jurek, M.; Hausmanowa-Petrusewicz, I. (2009). "Phenotype modifiers of spinal muscular atrophy: The number of SMN2 gene copies, deletion in the NAIP gene and probably gender influence the course of the disease". Acta Biochimica Polonica 56 (1): 103–108. PMID 19287802. edit
- ^ Su, Y. N.; Hung, C. C.; Lin, S. Y.; Chen, F. Y.; Chern, J. P. S.; Tsai, C.; Chang, T. S.; Yang, C. C. et al. (2011). Schrijver, Iris. ed. "Carrier Screening for Spinal Muscular Atrophy (SMA) in 107,611 Pregnant Women during the Period 2005–2009: A Prospective Population-Based Cohort Study". PLoS ONE 6 (2): e17067. doi:10.1371/journal.pone.0017067. PMC 3045421. PMID 21364876. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3045421. edit
- ^ Sugarman, E. A.; Nagan, N.; Zhu, H.; Akmaev, V. R.; Zhou, Z.; Rohlfs, E. M.; Flynn, K.; Hendrickson, B. C. et al. (2011). "Pan-ethnic carrier screening and prenatal diagnosis for spinal muscular atrophy: Clinical laboratory analysis of >72 400 specimens". European Journal of Human Genetics 20 (1): 27–32. doi:10.1038/ejhg.2011.134. PMC 3234503. PMID 21811307. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3234503. edit
- ^ Rutkove, S. B.; Shefner, J. M.; Gregas, M.; Butler, H.; Caracciolo, J.; Lin, C.; Fogerson, P. M.; Mongiovi, P. et al. (2010). "Characterizing spinal muscular atrophy with electrical impedance myography". Muscle & Nerve 42 (6): 915. doi:10.1002/mus.21784. edit
- ^ Little, S. E.; Janakiraman, V.; Kaimal, A.; Musci, T.; Ecker, J.; Caughey, A. B. (2010). "The cost-effectiveness of prenatal screening for spinal muscular atrophy". American Journal of Obstetrics and Gynecology 202 (3): 253.2e1. doi:10.1016/j.ajog.2010.01.032. PMID 20207244. edit
- ^ Bach, J. R.; Niranjan, V.; Weaver, B. (2000). "Spinal Muscular Atrophy Type 1: A Noninvasive Respiratory Management Approach". Chest 117 (4): 1100–1105. doi:10.1378/chest.117.4.1100. PMID 10767247. edit
- ^ Bach, J. R.; Saltstein, K.; Sinquee, D.; Weaver, B.; Komaroff, E. (2007). "Long-Term Survival in Werdnig–Hoffmann Disease". American Journal of Physical Medicine & Rehabilitation 86 (5): 339. doi:10.1097/PHM.0b013e31804a8505. PMID 17449977. edit
- ^ Leighton, S. (2003). "Nutrition issues associated with spinal muscular atrophy". Nutrition & Dietetics 60 (2): 92-96.
- ^ Messina, S.; Pane, M.; De Rose, P.; Vasta, I.; Sorleti, D.; Aloysius, A.; Sciarra, F.; Mangiola, F. et al. (2008). "Feeding problems and malnutrition in spinal muscular atrophy type II". Neuromuscular Disorders 18 (5): 389–393. doi:10.1016/j.nmd.2008.02.008. PMID 18420410. edit
- ^ Chen, Y. S.; Shih, H. H.; Chen, T. H.; Kuo, C. H.; Jong, Y. J. (2011). "Prevalence and Risk Factors for Feeding and Swallowing Difficulties in Spinal Muscular Atrophy Types II and III". The Journal of Pediatrics. doi:10.1016/j.jpeds.2011.08.016. edit
- ^ Tilton, A.; Miller, M.; Khoshoo, V. (1998). "Nutrition and swallowing in pediatric neuromuscular patients". Seminars in Pediatric Neurology 5 (2): 106–115. doi:10.1016/S1071-9091(98)80026-0. PMID 9661244. edit
- ^ Rudnik-Schoneborn, S.; Heller, R.; Berg, C.; Betzler, C.; Grimm, T.; Eggermann, T.; Eggermann, K.; Wirth, R. et al. (2008). "Congenital heart disease is a feature of severe infantile spinal muscular atrophy". Journal of Medical Genetics 45 (10): 635–638. doi:10.1136/jmg.2008.057950. PMID 18662980. edit
- ^ Heier, C. R.; Satta, R.; Lutz, C.; Didonato, C. J. (2010). "Arrhythmia and cardiac defects are a feature of spinal muscular atrophy model mice". Human Molecular Genetics 19 (20): 3906–3918. doi:10.1093/hmg/ddq330. PMC 2947406. PMID 20693262. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2947406. edit
- ^ Shababi, M.; Habibi, J.; Yang, H. T.; Vale, S. M.; Sewell, W. A.; Lorson, C. L. (2010). "Cardiac defects contribute to the pathology of spinal muscular atrophy models". Human Molecular Genetics 19 (20): 4059–4071. doi:10.1093/hmg/ddq329. PMID 20696672. edit
- ^ Bevan, A. K.; Hutchinson, K. R.; Foust, K. D.; Braun, L.; McGovern, V. L.; Schmelzer, L.; Ward, J. G.; Petruska, J. C. et al. (2010). "Early heart failure in the SMNΔ7 model of spinal muscular atrophy and correction by postnatal scAAV9-SMN delivery". Human Molecular Genetics 19 (20): 3895–3905. doi:10.1093/hmg/ddq300. PMC 2947399. PMID 20639395. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2947399. edit
- ^ Von Gontard, A.; Zerres, K.; Backes, M.; Laufersweiler-Plass, C.; Wendland, C.; Melchers, P.; Lehmkuhl, G.; Rudnik-Schöneborn, S. (2002). "Intelligence and cognitive function in children and adolescents with spinal muscular atrophy". Neuromuscular Disorders 12 (2): 130–136. doi:10.1016/S0960-8966(01)00274-7. PMID 11738354. edit
- ^ Billard, C.; Gillet, P.; Signoret, J. L.; Uicaut, E.; Bertrand, P.; Fardeau, M.; Barthez-Carpentier, M. A.; Santini, J. J. (1992). "Cognitive functions in duchenne muscular dystrophy: A reappraisal and comparison with spinal muscular atrophy". Neuromuscular Disorders 2 (5–6): 371–378. doi:10.1016/S0960-8966(06)80008-8. PMID 1300185. edit
- ^ Laufersweiler-Plass, C.; Rudnik-Schöneborn, S.; Zerres, K.; Backes, M.; Lehmkuhl, G.; Von Gontard, A. (2002). "Behavioural problems in children and adolescents with spinal muscular atrophy and their siblings". Developmental Medicine & Child Neurology 45. doi:10.1017/S0012162203000082. edit
- ^ De Oliveira, C. M.; Araújo, A. P. D. Q. C. (2011). "Self-reported quality of life has no correlation with functional status in children and adolescents with spinal muscular atrophy". European Journal of Paediatric Neurology 15 (1): 36–39. doi:10.1016/j.ejpn.2010.07.003. PMID 20800519. edit
- ^ Pruss, R. M.; Giraudon-Paoli, M.; Morozova, S.; Berna, P.; Abitbol, J. L.; Bordet, T. (2010). "Drug discovery and development for spinal muscular atrophy: Lessons from screening approaches and future challenges for clinical development". Future Medicinal Chemistry 2 (9): 1429–1440. doi:10.4155/FMC.10.228. PMID 21426138. edit
- ^ Sproule, D. M.; Kaufmann, P. (2010). "Therapeutic developments in spinal muscular atrophy". Therapeutic Advances in Neurological Disorders 3 (3): 173–185. doi:10.1177/1756285610369026. PMC 3002649. PMID 21179609. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3002649. edit
- ^ Fuller, H. R.; Barišić, M.; Šešo-Šimić, Đ. I.; Špeljko, T.; Morris, G. E.; Šimić, G. (2010). "Treatment strategies for spinal muscular atrophy". Translational Neuroscience 1 (4): 308. doi:10.2478/v10134-010-0045-4. edit
- ^ Sendtner, M. (2010). "Therapy development in spinal muscular atrophy". Nature Neuroscience 13 (7): 795–799. doi:10.1038/nn.2565. PMID 20581815. edit
- ^ a b Bosboom, W. M.; Vrancken, A. F. E.; Van Den Berg, L. H.; Wokke, J. H.; Iannaccone, S. T. (2009). "Drug treatment for spinal muscular atrophy type I". In Bosboom, Wendy MJ. Cochrane Database of Systematic Reviews. doi:10.1002/14651858.CD006281.pub2. edit
- ^ Bosboom, W. M.; Vrancken, A. F. E.; Van Den Berg, L. H.; Wokke, J. H.; Iannaccone, S. T. (2009). "Drug treatment for spinal muscular atrophy types II and III". In Bosboom, Wendy MJ. Cochrane Database of Systematic Reviews. doi:10.1002/14651858.CD006282.pub2. edit
- ^ Wadman, R. I.; Bosboom, W. M.; Van Den Berg, L. H.; Wokke, J. H.; Iannaccone, S. T.; Vrancken, A. F. E. (2011). "Drug treatment for spinal muscular atrophy type I". In Wadman, Renske I. Cochrane Database of Systematic Reviews. doi:10.1002/14651858.CD006281.pub3. edit
- ^ Wadman, R. I.; Bosboom, W. M.; Van Den Berg, L. H.; Wokke, J. H.; Iannaccone, S. T.; Vrancken, A. F. E. (2011). "Drug treatment for spinal muscular atrophy types II and III". In Wadman, Renske I. Cochrane Database of Systematic Reviews. doi:10.1002/14651858.CD006282.pub3. edit
- ^ Lewelt, A.; Newcomb, T. M.; Swoboda, K. J. (2011). "New Therapeutic Approaches to Spinal Muscular Atrophy". Current Neurology and Neuroscience Reports. doi:10.1007/s11910-011-0240-9. edit
- ^ Passini, M. A.; Cheng, S. H. (2011). "Prospects for the gene therapy of spinal muscular atrophy". Trends in Molecular Medicine 17 (5): 259–265. doi:10.1016/j.molmed.2011.01.002. PMID 21334976. edit
- ^ Bevan, A. K.; Duque, S.; Foust, K. D.; Morales, P. R.; Braun, L.; Schmelzer, L.; Chan, C. M.; McCrate, M. et al. (2011). "Systemic Gene Delivery in Large Species for Targeting Spinal Cord, Brain, and Peripheral Tissues for Pediatric Disorders". Molecular Therapy 19 (11): 1971–1980. doi:10.1038/mt.2011.157. PMC 3222525. PMID 21811247. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3222525. edit
- ^ Evans, M. C.; Cherry, J. J.; Androphy, E. J. (2011). "Differential regulation of the SMN2 gene by individual HDAC proteins". Biochemical and Biophysical Research Communications 414 (1): 25–30. doi:10.1016/j.bbrc.2011.09.011. PMID 21925145. edit
- ^ Chang, J. -G.; Hsieh-Li, H. -M.; Jong, Y. -J.; Wang, N. M.; Tsai, C. -H.; Li, H. (2001). "Treatment of spinal muscular atrophy by sodium butyrate". Proceedings of the National Academy of Sciences 98 (17): 9808. doi:10.1073/pnas.171105098. edit
- ^ Andreassi, C.; Angelozzi, C.; Tiziano, F. D.; Vitali, T.; De Vincenzi, E.; Boninsegna, A.; Villanova, M.; Bertini, E. et al. (2003). "Phenylbutyrate increases SMN expression in vitro: Relevance for treatment of spinal muscular atrophy". European Journal of Human Genetics 12 (1): 59–65. doi:10.1038/sj.ejhg.5201102. PMID 14560316. edit
- ^ Brahe, C.; Vitali, T.; Tiziano, F. D.; Angelozzi, C.; Pinto, A. M.; Borgo, F.; Moscato, U.; Bertini, E. et al. (2004). "Phenylbutyrate increases SMN gene expression in spinal muscular atrophy patients". European Journal of Human Genetics 13 (2): 256–259. doi:10.1038/sj.ejhg.5201320. PMID 15523494. edit
- ^ Mercuri, E.; Bertini, E.; Messina, S.; Solari, A.; d'Amico, A.; Angelozzi, C.; Battini, R.; Berardinelli, A. et al. (2007). "Randomized, double-blind, placebo-controlled trial of phenylbutyrate in spinal muscular atrophy". Neurology 68 (1): 51–55. doi:10.1212/01.wnl.0000249142.82285.d6. PMID 17082463. edit
- ^ "Study to Evaluate Sodium Phenylbutyrate in Pre-symptomatic Infants With Spinal Muscular Atrophy (STOPSMA)". http://clinicaltrials.gov/ct2/show/NCT00528268. Retrieved 28 December 2011.
- ^ Brichta, L.; Hofmann, Y.; Hahnen, E.; Siebzehnrubl, F. A.; Raschke, H.; Blumcke, I.; Eyupoglu, I. Y.; Wirth, B. (2003). "Valproic acid increases the SMN2 protein level: A well-known drug as a potential therapy for spinal muscular atrophy". Human Molecular Genetics 12 (19): 2481–2489. doi:10.1093/hmg/ddg256. PMID 12915451. edit
- ^ Tsai, L. K.; Tsai, M. S.; Ting, C. H.; Li, H. (2008). "Multiple therapeutic effects of valproic acid in spinal muscular atrophy model mice". Journal of Molecular Medicine 86 (11): 1243–1254. doi:10.1007/s00109-008-0388-1. PMID 18649067. edit
- ^ Swoboda, K. J.; Scott, C. B.; Crawford, T. O.; Simard, L. R.; Reyna, S. P.; Krosschell, K. J.; Acsadi, G.; Elsheik, B. et al. (2010). Boutron, Isabelle. ed. "SMA CARNI-VAL Trial Part I: Double-Blind, Randomized, Placebo-Controlled Trial of L-Carnitine and Valproic Acid in Spinal Muscular Atrophy". PLoS ONE 5 (8): e12140. doi:10.1371/journal.pone.0012140. PMC 2924376. PMID 20808854. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2924376. edit
- ^ Kissel, J. T.; Scott, C. B.; Reyna, S. P.; Crawford, T. O.; Simard, L. R.; Krosschell, K. J.; Acsadi, G.; Elsheik, B. et al. (2011). Feany, Mel B.. ed. "SMA CARNI-VAL TRIAL PART II: A Prospective, Single-Armed Trial of L-Carnitine and Valproic Acid in Ambulatory Children with Spinal Muscular Atrophy". PLoS ONE 6 (7): e21296. doi:10.1371/journal.pone.0021296. PMC 3130730. PMID 21754985. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3130730. edit
- ^ Darbar, I. A.; Plaggert, P. G.; Resende, M. B. D.; Zanoteli, E.; Reed, U. C. (2011). "Evaluation of muscle strength and motor abilities in children with type II and III spinal muscle atrophy treated with valproic acid". BMC Neurology 11: 36. doi:10.1186/1471-2377-11-36. PMC 3078847. PMID 21435220. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3078847. edit
- ^ Rak, K.; Lechner, B. D.; Schneider, C.; Drexl, H.; Sendtner, M.; Jablonka, S. (2009). "Valproic acid blocks excitability in SMA type I mouse motor neurons". Neurobiology of Disease 36 (3): 477–487. doi:10.1016/j.nbd.2009.08.014. PMID 19733665. edit
- ^ Riessland, M.; Brichta, L.; Hahnen, E.; Wirth, B. (2006). "The benzamide M344, a novel histone deacetylase inhibitor, significantly increases SMN2 RNA/protein levels in spinal muscular atrophy cells". Human Genetics 120 (1): 101–110. doi:10.1007/s00439-006-0186-1. PMID 16724231. edit
- ^ Garbes, L.; Riessland, M.; Holker, I.; Heller, R.; Hauke, J.; Trankle, C.; Coras, R.; Blumcke, I. et al. (2009). "LBH589 induces up to 10-fold SMN protein levels by several independent mechanisms and is effective even in cells from SMA patients non-responsive to valproate". Human Molecular Genetics 18 (19): 3645–3658. doi:10.1093/hmg/ddp313. PMID 19584083. edit
- ^ Narver, H. L.; Kong, L.; Burnett, B. G.; Choe, D. W.; Bosch-Marcé, M.; Taye, A. A.; Eckhaus, M. A.; Sumner, C. J. (2008). "Sustained improvement of spinal muscular atrophy mice treated with trichostatin a plus nutrition". Annals of Neurology 64 (4): 465–470. doi:10.1002/ana.21449. PMID 18661558. edit
- ^ Avila, A. M.; Burnett, B. G.; Taye, A. A.; Gabanella, F.; Knight, M. A.; Hartenstein, P.; Cizman, Z.; Di Prospero, N. A. et al. (2007). "Trichostatin a increases SMN expression and survival in a mouse model of spinal muscular atrophy". Journal of Clinical Investigation 117 (3): 659–671. doi:10.1172/JCI29562. PMC 1797603. PMID 17318264. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1797603. edit
- ^ Riessland, M.; Ackermann, B.; Forster, A.; Jakubik, M.; Hauke, J.; Garbes, L.; Fritzsche, I.; Mende, Y. et al. (2010). "SAHA ameliorates the SMA phenotype in two mouse models for spinal muscular atrophy". Human Molecular Genetics 19 (8): 1492–1506. doi:10.1093/hmg/ddq023. PMID 20097677. edit
- ^ Grzeschik, S. M.; Ganta, M.; Prior, T. W.; Heavlin, W. D.; Wang, C. H. (2010). "Hydroxyurea enhances SMN2 gene expression in spinal muscular atrophy cells". Annals of Neurology 58 (2): 194–202. doi:10.1002/ana.20548. PMID 16049920. edit
- ^ Chen, T. - H.; Chang, J. - G.; Yang, Y. - H.; Mai, H. - H.; Liang, W. - C.; Wu, Y. - C.; Wang, H. - Y.; Huang, Y. - B. et al. (2010). "Randomized, double-blind, placebo-controlled trial of hydroxyurea in spinal muscular atrophy". Neurology 75 (24): 2190–2197. doi:10.1212/WNL.0b013e3182020332. PMID 21172842. edit
- ^ Sakla, M. S.; Lorson, C. L. (2007). "Induction of full-length survival motor neuron by polyphenol botanical compounds". Human Genetics 122 (6): 635–643. doi:10.1007/s00439-007-0441-0. PMID 17962980. edit
- ^ Dayangaç-Erden, D.; Bora, G.; Ayhan, P.; Kocaefe, Ç.; Dalkara, S.; Yelekçi, K.; Demir, A. S.; Erdem-Yurter, H. (2009). "Histone Deacetylase Inhibition Activity and Molecular Docking of (E )-Resveratrol: Its Therapeutic Potential in Spinal Muscular Atrophy". Chemical Biology & Drug Design 73 (3): 355. doi:10.1111/j.1747-0285.2009.00781.x. edit
- ^ Farooq, F.; Molina, F. A. A.; Hadwen, J.; MacKenzie, D.; Witherspoon, L.; Osmond, M.; Holcik, M.; MacKenzie, A. (2011). "Prolactin increases SMN expression and survival in a mouse model of severe spinal muscular atrophy via the STAT5 pathway". Journal of Clinical Investigation 121 (8): 3042–3050. doi:10.1172/JCI46276. PMC 3148738. PMID 21785216. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3148738. edit
- ^ Angelozzi, C.; Borgo, F.; Tiziano, F. D.; Martella, A.; Neri, G.; Brahe, C. (2007). "Salbutamol increases SMN mRNA and protein levels in spinal muscular atrophy cells". Journal of Medical Genetics 45 (1): 29–31. doi:10.1136/jmg.2007.051177. PMID 17932121. edit
- ^ Pane, M.; Staccioli, S.; Messina, S.; d’Amico, A.; Pelliccioni, M.; Mazzone, E. S.; Cuttini, M.; Alfieri, P. et al. (2008). "Daily salbutamol in young patients with SMA type II". Neuromuscular Disorders 18 (7): 536–540. doi:10.1016/j.nmd.2008.05.004. PMID 18579379. edit
- ^ Tiziano, F. D.; Lomastro, R.; Pinto, A. M.; Messina, S.; d'Amico, A.; Fiori, S.; Angelozzi, C.; Pane, M. et al. (2010). "Salbutamol increases survival motor neuron (SMN) transcript levels in leucocytes of spinal muscular atrophy (SMA) patients: Relevance for clinical trial design". Journal of Medical Genetics 47 (12): 856–858. doi:10.1136/jmg.2010.080366. PMID 20837492. edit
- ^ Andreassi, C.; Jarecki, J.; Zhou, J.; Coovert, D. D.; Monani, U. R.; Chen, X.; Whitney, M.; Pollok, B. et al. (2001). "Aclarubicin treatment restores SMN levels to cells derived from type I spinal muscular atrophy patients". Human Molecular Genetics 10 (24): 2841–2849. doi:10.1093/hmg/10.24.2841. PMID 11734549. edit
- ^ Dimatteo, D.; Callahan, S.; Kmiec, E. B. (2008). "Genetic conversion of an SMN2 gene to SMN1: A novel approach to the treatment of spinal muscular atrophy". Experimental Cell Research 314 (4): 878–886. doi:10.1016/j.yexcr.2007.10.012. PMID 18078930. edit
- ^ Burghes, A. H. M.; McGovern, V. L. (2010). "Antisense oligonucleotides and spinal muscular atrophy: Skipping along". Genes & Development 24 (15): 1574. doi:10.1101/gad.1961710. edit
- ^ Passini, M. A.; Bu, J.; Richards, A. M.; Kinnecom, C.; Sardi, S. P.; Stanek, L. M.; Hua, Y.; Rigo, F. et al. (2011). "Antisense Oligonucleotides Delivered to the Mouse CNS Ameliorate Symptoms of Severe Spinal Muscular Atrophy". Science Translational Medicine 3 (72): 72ra18. doi:10.1126/scitranslmed.3001777. PMC 3140425. PMID 21368223. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3140425. edit
- ^ Butchbach, M. E. R.; Singh, J.; Thorsteinsdottir, M.; Saieva, L.; Slominski, E.; Thurmond, J.; Andresson, T.; Zhang, J. et al. (2009). "Effects of 2,4-diaminoquinazoline derivatives on SMN expression and phenotype in a mouse model for spinal muscular atrophy". Human Molecular Genetics 19 (3): 454–467. doi:10.1093/hmg/ddp510. PMC 2798721. PMID 19897588. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2798721. edit
- ^ Zhang, M. L.; Lorson, C. L.; Androphy, E. J.; Zhou, J. (2001). "An in vivo reporter system for measuring increased inclusion of exon 7 in SMN2 mRNA: Potential therapy of SMA". Gene Therapy 8 (20): 1532–1538. doi:10.1038/sj.gt.3301550. PMID 11704813. edit
- ^ Burnett, B. G.; Munoz, E.; Tandon, A.; Kwon, D. Y.; Sumner, C. J.; Fischbeck, K. H. (2008). "Regulation of SMN Protein Stability". Molecular and Cellular Biology 29 (5): 1107–1115. doi:10.1128/MCB.01262-08. PMC 2643817. PMID 19103745. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2643817. edit
- ^ Mattis, V. B.; Rai, R.; Wang, J.; Chang, C. W. T.; Coady, T.; Lorson, C. L. (2006). "Novel aminoglycosides increase SMN levels in spinal muscular atrophy fibroblasts". Human Genetics 120 (4): 589–601. doi:10.1007/s00439-006-0245-7. PMID 16951947. edit
- ^ Mattis, V. B.; Fosso, M. Y.; Chang, C. W.; Lorson, C. L. (2009). "Subcutaneous administration of TC007 reduces disease severity in an animal model of SMA". BMC Neuroscience 10: 142. doi:10.1186/1471-2202-10-142. PMC 2789732. PMID 19948047. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2789732. edit
- ^ Lunn, M. R.; Root, D. E.; Martino, A. M.; Flaherty, S. P.; Kelley, B. P.; Coovert, D. D.; Burghes, A. H.; Thi Man, N. et al. (2004). "Indoprofen Upregulates the Survival Motor Neuron Protein through a Cyclooxygenase-Independent Mechanism". Chemistry & Biology 11 (11): 1489. doi:10.1016/j.chembiol.2004.08.024. edit
- ^ Nizzardo, M.; Nardini, M.; Ronchi, D.; Salani, S.; Donadoni, C.; Fortunato, F.; Colciago, G.; Falcone, M. et al. (2011). "Beta-lactam antibiotic offers neuroprotection in a spinal muscular atrophy model by multiple mechanisms". Experimental Neurology 229 (2): 214–225. doi:10.1016/j.expneurol.2011.01.017. PMID 21295027. edit
- ^ Hedlund, E. (2011). "The protective effects of beta-lactam antibiotics in motor neuron disorders". Experimental Neurology 231 (1): 14–18. doi:10.1016/j.expneurol.2011.06.002. PMID 21693120. edit
- ^ Rose, F. F.; Mattis, V. B.; Rindt, H.; Lorson, C. L. (2009). "Delivery of recombinant follistatin lessens disease severity in a mouse model of spinal muscular atrophy". Human Molecular Genetics 18 (6): 997–1005. doi:10.1093/hmg/ddn426. PMC 2649020. PMID 19074460. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2649020. edit
- ^ Takeuchi, Y.; Miyanomae, Y.; Komatsu, H.; Oomizono, Y.; Nishimura, A.; Okano, S.; Nishiki, T.; Sawada, T. (1994). "Efficacy of Thyrotropin-Releasing Hormone in the Treatment of Spinal Muscular Atrophy". Journal of Child Neurology 9 (3): 287–289. doi:10.1177/088307389400900313. PMID 7930408. edit
- ^ Tzeng, A. C.; Cheng, J.; Fryczynski, H.; Niranjan, V.; Stitik, T.; Sial, A.; Takeuchi, Y.; Foye, P. et al. (2000). "A study of thyrotropin-releasing hormone for the treatment of spinal muscular atrophy: A preliminary report". American journal of physical medicine & rehabilitation / Association of Academic Physiatrists 79 (5): 435–440. PMID 10994885. edit
- ^ Kato, Z.; Okuda, M.; Okumura, Y.; Arai, T.; Teramoto, T.; Nishimura, M.; Kaneko, H.; Kondo, N. (2009). "Oral Administration of the Thyrotropin-Releasing Hormone (TRH) Analogue, Taltireline Hydrate, in Spinal Muscular Atrophy". Journal of Child Neurology 24 (8): 1010–1012. doi:10.1177/0883073809333535. PMID 19666885. edit
- ^ "Roche signs agreement with PTC Therapeutics to advance treatment for Spinal Muscular Atrophy (SMA)". http://ptct.client.shareholder.com/ReleaseDetail.cfm?ReleaseID=627602. Retrieved 28 December 2011.
- ^ Chang, H. C. H.; Dimlich, D. N.; Yokokura, T.; Mukherjee, A.; Kankel, M. W.; Sen, A.; Sridhar, V.; Fulga, T. A. et al. (2008). Lewin, Alfred. ed. "Modeling Spinal Muscular Atrophy in Drosophila". PLoS ONE 3 (9): e3209. doi:10.1371/journal.pone.0003209. PMC 2527655. PMID 18791638. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2527655. edit
- ^ Beattie, C. E.; Carrel, T. L.; McWhorter, M. L. (2007). "Fishing for a Mechanism: Using Zebrafish to Understand Spinal Muscular Atrophy". Journal of Child Neurology 22 (8): 995–1003. doi:10.1177/0883073807305671. PMID 17761655. edit
- ^ Sleigh, J. N.; Gillingwater, T. H.; Talbot, K. (2011). "The contribution of mouse models to understanding the pathogenesis of spinal muscular atrophy". Disease Models & Mechanisms 4 (4): 457. doi:10.1242/dmm.007245. edit
- ^ "The GSF and FightSMA Announce 100K Research Award". http://www.fightsma.org/blog/uncategorized/the-gsf-and-fightsma-announce-100k-research-award. Retrieved 18 December 2011.
- ^ Le, T. T.; McGovern, V. L.; Alwine, I. E.; Wang, X.; Massoni-Laporte, A.; Rich, M. M.; Burghes, A. H. M. (2011). "Temporal requirement for high SMN expression in SMA mice". Human Molecular Genetics 20 (18): 3578–3591. doi:10.1093/hmg/ddr275. PMC 3159555. PMID 21672919. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3159555. edit
- ^ Porensky, P. N.; Mitrpant, C.; McGovern, V. L.; Bevan, A. K.; Foust, K. D.; Kaspar, B. K.; Wilton, S. D.; Burghes, A. H. M. (2011). "A single administration of morpholino antisense oligomer rescues spinal muscular atrophy in the mouse". Human Molecular Genetics. doi:10.1093/hmg/ddr600. PMID 22186025. edit
- ^ Yuan, N.; Wang, C. H.; Trela, A.; Albanese, C. T. (2007). "Laparoscopic Nissen Fundoplication During Gastrostomy Tube Placement and Noninvasive Ventilation May Improve Survival in Type I and Severe Type II Spinal Muscular Atrophy". Journal of Child Neurology 22 (6): 727–731. doi:10.1177/0883073807304009. PMID 17641258. edit
- ^ Bach, J. R. (2007). "Medical Considerations of Long-Term Survival of Werdnig–Hoffmann Disease". American Journal of Physical Medicine & Rehabilitation 86 (5): 349. doi:10.1097/PHM.0b013e31804b1d66. PMID 17449979. edit
|
|
Inflammation |
|
|
Brain/
encephalopathy |
|
|
|
|
autoimmune ( Multiple sclerosis, Neuromyelitis optica, Schilder's disease) · hereditary ( Adrenoleukodystrophy, Alexander, Canavan, Krabbe, ML, PMD, VWM, MFC, CAMFAK syndrome) · Central pontine myelinolysis · Marchiafava-Bignami disease · Alpers' disease
|
|
|
|
|
|
|
|
Other
|
|
|
|
Spinal cord/
myelopathy |
|
|
Both/either |
|
|
|
anat(n/s/m/p/4/e/b/d/c/a/f/l/g)/phys/devp
|
noco(m/d/e/h/v/s)/cong/tumr, sysi/epon, injr
|
proc, drug(N1A/2AB/C/3/4/7A/B/C/D)
|
|
|
|
Nucleus diseases
|
|
Telomere |
|
|
Nucleolus |
|
|
Centromere |
|
|
Other |
|
|
see also nucleus
B structural (perx, skel, cili, mito, nucl, sclr) · DNA/RNA/protein synthesis (drep, trfc, tscr, tltn) · membrane (icha, slcr, atpa, abct, othr) · transduction (iter, csrc, itra), trfk
|
|